Agilent 53131A/132A/181A Counters
High-performance, low-cost counters simplify and speed systems and bench frequency measurements

Product Overview

A family of universal and RF counters to meet your needs

Agilent Technologies 53131A/132A/181A high-performance counters give you fast, precise frequency measurements at an affordable price. These counters feature an intuitive user interface and one-button access to frequently used functions so you can make accurate measurements quickly and easily.

Real-time digital signal processing technology is used to analyze data while simultaneously taking new readings, speeding measurement throughput. The technology, developed for Agilent’s high-end line of modulation domain analyzers, allows the counters to gather more data for each measurement, so you get higher-resolution measurements in a fraction of the time it takes other counters.

The 53131A/132A/181A counters offer built-in statistics and math functions so you can scale measurements and simultaneously measure and track average, min/max and standard deviation. Automated limit testing lets you set upper and lower limits for any measurement. An analog display mode lets you see at a glance whether a measurement is within pass/fail limits. The counters flag out-of-limit conditions and can generate an output signal to trigger external devices when a limit is exceeded. For quick access to frequently used tests, a single key-stroke recalls up to 20 different stored front-panel set-ups.

For computer-controlled systems applications, each counter includes a standard GPIB interface with full SCPI-compatible programmability and a data transfer rate of up to 200 fully formatted measurements per second. The standard RS-232 talk-only interface provides printer support or data transfer to a computer through a terminal-emulation program.

Agilent 53132A Universal Counter

For applications requiring higher resolution, the 53132A offers the same features and functions as the 53131A, with up to 12 digits/sec frequency/period resolution and 150 ps time interval resolution. In addition, the 53132A offers advanced arming modes for time interval measurements.

Agilent 53181A RF Counter

Optimized for RF applications, the single-channel 10 digit/s 53181A measures frequency, period and peak voltage. A digit-blanking function lets you easily eliminate unnecessary digits when you want to read measurements quickly. For higher-frequency measurements, choose an optional second channel that provides measurements up to 3 GHz, 5 GHz, or 12.4 GHz. Standard measurements include frequency, period, ratio, time interval, pulse width, rise/fall time, phase angle, duty cycle, totalize, and peak voltage.

Agilent 53131A Universal Counter

The two-channel 53131A counter offers 10 digits per second of frequency/period resolution and a bandwidth of 225 MHz. Time interval resolution is specified at 500 ps. An optional third channel provides frequency measurements up to 3 GHz, 5 GHz, or 12.4 GHz. Standard measurements include frequency, period, ratio, time interval, pulse width, rise/fall time, phase angle, duty cycle, totalize, and peak voltage.

A family of universal and RF counters to meet your needs

Agilent Technologies 53131A/132A/181A high-performance counters give you fast, precise frequency measurements at an affordable price. These counters feature an intuitive user interface and one-button access to frequently used functions so you can make accurate measurements quickly and easily.

Real-time digital signal processing technology is used to analyze data while simultaneously taking new readings, speeding measurement throughput. The technology, developed for Agilent’s high-end line of modulation domain analyzers, allows the counters to gather more data for each measurement, so you get higher-resolution measurements in a fraction of the time it takes other counters.

The 53131A/132A/181A counters offer built-in statistics and math functions so you can scale measurements and simultaneously measure and track average, min/max and standard deviation. Automated limit testing lets you set upper and lower limits for any measurement. An analog display mode lets you see at a glance whether a measurement is within pass/fail limits. The counters flag out-of-limit conditions and can generate an output signal to trigger external devices when a limit is exceeded. For quick access to frequently used tests, a single key-stroke recalls up to 20 different stored front-panel set-ups.

For computer-controlled systems applications, each counter includes a standard GPIB interface with full SCPI-compatible programmability and a data transfer rate of up to 200 fully formatted measurements per second. The standard RS-232 talk-only interface provides printer support or data transfer to a computer through a terminal-emulation program.

Agilent 53132A Universal Counter

For applications requiring higher resolution, the 53132A offers the same features and functions as the 53131A, with up to 12 digits/sec frequency/period resolution and 150 ps time interval resolution. In addition, the 53132A offers advanced arming modes for time interval measurements.

Agilent 53181A RF Counter

Optimized for RF applications, the single-channel 10 digit/s 53181A measures frequency, period and peak voltage. A digit-blanking function lets you easily eliminate unnecessary digits when you want to read measurements quickly. For higher-frequency measurements, choose an optional second channel that provides measurements up to 3 GHz, 5 GHz, or 12.4 GHz. Standard measurements include frequency, period, ratio, time interval, pulse width, rise/fall time, phase angle, duty cycle, totalize, and peak voltage.

A family of universal and RF counters to meet your needs

Agilent Technologies 53131A/132A/181A high-performance counters give you fast, precise frequency measurements at an affordable price. These counters feature an intuitive user interface and one-button access to frequently used functions so you can make accurate measurements quickly and easily.

Real-time digital signal processing technology is used to analyze data while simultaneously taking new readings, speeding measurement throughput. The technology, developed for Agilent’s high-end line of modulation domain analyzers, allows the counters to gather more data for each measurement, so you get higher-resolution measurements in a fraction of the time it takes other counters.

The 53131A/132A/181A counters offer built-in statistics and math functions so you can scale measurements and simultaneously measure and track average, min/max and standard deviation. Automated limit testing lets you set upper and lower limits for any measurement. An analog display mode lets you see at a glance whether a measurement is within pass/fail limits. The counters flag out-of-limit conditions and can generate an output signal to trigger external devices when a limit is exceeded. For quick access to frequently used tests, a single key-stroke recalls up to 20 different stored front-panel set-ups.

For computer-controlled systems applications, each counter includes a standard GPIB interface with full SCPI-compatible programmability and a data transfer rate of up to 200 fully formatted measurements per second. The standard RS-232 talk-only interface provides printer support or data transfer to a computer through a terminal-emulation program.

Agilent 53132A Universal Counter

For applications requiring higher resolution, the 53132A offers the same features and functions as the 53131A, with up to 12 digits/sec frequency/period resolution and 150 ps time interval resolution. In addition, the 53132A offers advanced arming modes for time interval measurements.

Agilent 53181A RF Counter

Optimized for RF applications, the single-channel 10 digit/s 53181A measures frequency, period and peak voltage. A digit-blanking function lets you easily eliminate unnecessary digits when you want to read measurements quickly. For higher-frequency measurements, choose an optional second channel that provides measurements up to 3 GHz, 5 GHz, or 12.4 GHz. Standard measurements include frequency, period, ratio, time interval, pulse width, rise/fall time, phase angle, duty cycle, totalize, and peak voltage.

A family of universal and RF counters to meet your needs

Agilent Technologies 53131A/132A/181A high-performance counters give you fast, precise frequency measurements at an affordable price. These counters feature an intuitive user interface and one-button access to frequently used functions so you can make accurate measurements quickly and easily.

Real-time digital signal processing technology is used to analyze data while simultaneously taking new readings, speeding measurement throughput. The technology, developed for Agilent’s high-end line of modulation domain analyzers, allows the counters to gather more data for each measurement, so you get higher-resolution measurements in a fraction of the time it takes other counters.

The 53131A/132A/181A counters offer built-in statistics and math functions so you can scale measurements and simultaneously measure and track average, min/max and standard deviation. Automated limit testing lets you set upper and lower limits for any measurement. An analog display mode lets you see at a glance whether a measurement is within pass/fail limits. The counters flag out-of-limit conditions and can generate an output signal to trigger external devices when a limit is exceeded. For quick access to frequently used tests, a single key-stroke recalls up to 20 different stored front-panel set-ups.

For computer-controlled systems applications, each counter includes a standard GPIB interface with full SCPI-compatible programmability and a data transfer rate of up to 200 fully formatted measurements per second. The standard RS-232 talk-only interface provides printer support or data transfer to a computer through a terminal-emulation program.

Agilent 53132A Universal Counter

For applications requiring higher resolution, the 53132A offers the same features and functions as the 53131A, with up to 12 digits/sec frequency/period resolution and 150 ps time interval resolution. In addition, the 53132A offers advanced arming modes for time interval measurements.

Agilent 53181A RF Counter

Optimized for RF applications, the single-channel 10 digit/s 53181A measures frequency, period and peak voltage. A digit-blanking function lets you easily eliminate unnecessary digits when you want to read measurements quickly. For higher-frequency measurements, choose an optional second channel that provides measurements up to 3 GHz, 5 GHz, or 12.4 GHz. Standard measurements include frequency, period, ratio, time interval, pulse width, rise/fall time, phase angle, duty cycle, totalize, and peak voltage.

A family of universal and RF counters to meet your needs

Agilent Technologies 53131A/132A/181A high-performance counters give you fast, precise frequency measurements at an affordable price. These counters feature an intuitive user interface and one-button access to frequently used functions so you can make accurate measurements quickly and easily.

Real-time digital signal processing technology is used to analyze data while simultaneously taking new readings, speeding measurement throughput. The technology, developed for Agilent’s high-end line of modulation domain analyzers, allows the counters to gather more data for each measurement, so you get higher-resolution measurements in a fraction of the time it takes other counters.

The 53131A/132A/181A counters offer built-in statistics and math functions so you can scale measurements and simultaneously measure and track average, min/max and standard deviation. Automated limit testing lets you set upper and lower limits for any measurement. An analog display mode lets you see at a glance whether a measurement is within pass/fail limits. The counters flag out-of-limit conditions and can generate an output signal to trigger external devices when a limit is exceeded. For quick access to frequently used tests, a single key-stroke recalls up to 20 different stored front-panel set-ups.

For computer-controlled systems applications, each counter includes a standard GPIB interface with full SCPI-compatible programmability and a data transfer rate of up to 200 fully formatted measurements per second. The standard RS-232 talk-only interface provides printer support or data transfer to a computer through a terminal-emulation program.

Agilent 53132A Universal Counter

For applications requiring higher resolution, the 53132A offers the same features and functions as the 53131A, with up to 12 digits/sec frequency/period resolution and 150 ps time interval resolution. In addition, the 53132A offers advanced arming modes for time interval measurements.

Agilent 53181A RF Counter

Optimized for RF applications, the single-channel 10 digit/s 53181A measures frequency, period and peak voltage. A digit-blanking function lets you easily eliminate unnecessary digits when you want to read measurements quickly. For higher-frequency measurements, choose an optional second channel that provides measurements up to 3 GHz, 5 GHz, or 12.4 GHz. Standard measurements include frequency, period, ratio, time interval, pulse width, rise/fall time, phase angle, duty cycle, totalize, and peak voltage.
Agilent IntuiLink provides easy access to the counter’s data from your PC

The Agilent 53131A/132A/181A counters capture precise frequency and time measurements. IntuiLink software allows that data to be put to work easily. You work in a familiar environment at all times, using PC applications such as Microsoft Excel® or Word® to analyze, interpret, display, print, and document the data you get from the counter.

Also available is BenchLink Meter software, a standalone application.

It gives you the flexibility to configure and run tests from your PC, making data gathering more convenient.

BenchLink Meter lets you:
- configure tests, including measurement type, number of readings, measurement speed, and more.
- choose display modes from real-time strip chart, histogram, readout, and table mode.
- scale measurements data.
- copy captured data to other programs.

Optional timebases offer increased stability

Optional timebases are available for 53131A/132A/181A counters to increase measurement accuracy. Option 010 provides a high stability oven timebase with aging of less than 5×10^{-10} per day.

Microsoft Excel and Word are US registered trademarks of Microsoft Corporation.

Time Base

Internal Time Base Stability (see graph 3 for timebase contribution of measurement error)

<table>
<thead>
<tr>
<th></th>
<th>Standard (0° to 50° C)</th>
<th>Medium Oven (Option 001)</th>
<th>High Oven (Option 010)</th>
<th>Ultra High Oven (Option 012 for 53132A only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Stability (referenced to 25°C)</td>
<td>$< 5 \times 10^{-6}$</td>
<td>$< 2 \times 10^{-7}$</td>
<td>$< 2.5 \times 10^{-9}$</td>
<td>$< 2.5 \times 10^{-9}$</td>
</tr>
<tr>
<td>Aging Rate (after 30 days)</td>
<td>Per Day: $< 4 \times 10^{-8}$</td>
<td>Per Month: $< 2 \times 10^{-7}$</td>
<td>Per Year: 1×10^{-10}</td>
<td>$< 3 \times 10^{-10}$</td>
</tr>
<tr>
<td>Turn-on stability vs. time (in 30 minutes)</td>
<td>$< 2 \times 10^{-7}$</td>
<td>referenced to 2 Hr</td>
<td>$< 5 \times 10^{-9}$</td>
<td>referenced to 2 Hr</td>
</tr>
</tbody>
</table>

Calibration

- Manual Adjust
- Electronic

Note that power to the time base is maintained when the counter is placed in standby via the front panel switch. The internal fan will continue to operate when in standby to maintain long-term measurement reliability.

Instrument Inputs

Input Specifications

Channel 1 & 2 (53131A, 53132A)

- **Channel 1 (53181A)**

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>dc Coupled</th>
<th>1 MHz to 225 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>ac Coupled</td>
<td>1 MHz to 225 MHz (50 Ω)</td>
<td>30 Hz to 225 MHz (1 MΩ)</td>
</tr>
<tr>
<td>FM Tolerance</td>
<td>25%</td>
<td></td>
</tr>
</tbody>
</table>

Voltage Range and Sensitivity (Sinusoid)³	dc to 100 MHz	20 mVrms to ±5 V ac + dc
	100 MHz to 200 MHz	30 mVrms to ±5 V ac + dc
	200 MHz to 225 MHz	40 mVrms to ±5 V ac + dc (all specified at 75 mVrms with opt. rear connectors)³

| Voltage Range and Sensitivity (Single-Shot Pulse)² | 4.5 ns to 10 ns | 100 mVpp to 10 Vpp (150 mVpp with optional rear connectors)³ |
| | >10 ns Pulse Width | 50 mVpp to 10 Vpp (100 mVpp with optional rear connectors)³ |

Trigger Level²	± 5.125 V
Accuracy	± (15 mV + 1% of trigger level)
Resolution	5 mV

Damage Level	5 Vrms
50 Ω	0 to 3.5 kHz, 1 MΩ
3.5 kHz to 100 kHz, 1 MΩ	350 Vdc + ac pk
>100 kHz, 1 MΩ	350 Vdc + ac pk linearly derated to 5 Vrms

Input Characteristics

Channel 1 & 2 (53131A, 53132A)

Channel 1 (53181A)

- Impedance: 1 MΩ or 50 Ω
- 1 MΩ Capacitance
- Coupling: ac or dc
- Low-Pass Filter: 100 kHz, switchable
- Input Sensitivity: Selectable between Low, Medium, or High (default). Low is approximately 2X High Sensitivity.

1. Specifications and Characteristics for Channels 1 and 2 are identical for both common and separate configurations.
2. Values shown are for X1 attenuator setting. Multiply all values by 10 (nominal) when using the X10 attenuator setting.
3. When the 53131A or 53132A are ordered with the optional rear terminals (Opt. 060), the channel 1 and 2 inputs are active on both front and rear of the counter. When the 53181A is ordered with the optional rear terminal, the channel 1 input is active on both front and rear of the counter. For this condition, specifications indicated for the rear connections also apply to the front connections.
When optional additional channels are ordered with Option 124 200 MHz to 12.4 GHz Option 050 200 MHz to 5 GHz Option 030 100 MHz to 2.7 GHz:

- **Power Range and Sensitivity (Sinusoid)**
 - Option 124 200 MHz to 12.4 GHz
 - Option 050 200 MHz to 5 GHz
 - Option 030 100 MHz to 3 GHz
 - Option 015 100 MHz to 1.5 GHz

- **Input Specifications**
 - Channel 2 (53181A)
 - Channel 3 (53131A, 53132A)

- **External Arm Input Specifications**
 - Impedance 1 kΩ
 - Input Capacitance 17 pF
 - Start/Stop Slope Positive or Negative

- **External Time Base Input Specifications**
 - Start/Stop Time > 50 ns
 - Transition Time < 250 ns
 - Pulse Width > 50 ns

- **External Time Base Output Specifications**
 - Output Frequency 10 MHz
 - Time Base Output Specifications
 - Frequency 1 MHz, 5 MHz, and 10 MHz
 - 0.2 ns to 5 ns

- **For Automatic or External Arming:**
 - (and signals < 100 Hz using Timed Arming)

<table>
<thead>
<tr>
<th>Frequency</th>
<th>53131A</th>
<th>53132A</th>
<th>53181A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 030</td>
<td>100 MHz to 2.7 GHz: 27 dBm to +19 dBm</td>
<td>2.7 GHz to 3 GHz: 21 dBm to +13 dBm</td>
<td>100 MHz to 3 GHz: 23 dBm to +13 dBm</td>
</tr>
<tr>
<td>Option 050</td>
<td>200 MHz to 5 GHz: 23 dBm to +13 dBm</td>
<td>100 MHz to 3 GHz: 23 dBm to +13 dBm</td>
<td></td>
</tr>
<tr>
<td>Option 124</td>
<td>200 MHz to 12.4 GHz: 23 dBm to +13 dBm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For Time or Digits Arming:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>53131A/181A</th>
<th>53132A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 030</td>
<td>50 ps</td>
<td>0.33 ns</td>
</tr>
<tr>
<td>Option 050</td>
<td>0.66 ns</td>
<td>0.2 ns</td>
</tr>
<tr>
<td>Option 124</td>
<td>0.66 ns</td>
<td>0.66 ns</td>
</tr>
</tbody>
</table>

For Automatic Arming:

- **Gate Time** = \(\frac{\text{Frequency}}{N} \)
 - where N = 1 for standard channel Frequency < 1 MHz
 - 4 for standard channel Frequency > 1 MHz
 - 128 for optional channel

Systematic Uncertainty:

- \(\frac{\pm \text{Time Base Error} \pm \text{tacc}}{\text{Gate Time}} \times \frac{\text{Frequency}}{\text{Period}} \)

<table>
<thead>
<tr>
<th>Frequency</th>
<th>53131A</th>
<th>53132A</th>
<th>53181A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 030</td>
<td>350 ps</td>
<td>100 ps</td>
<td>350 ps</td>
</tr>
<tr>
<td>worst case</td>
<td>1.25 ns</td>
<td>500 ps</td>
<td>1.25 ns</td>
</tr>
</tbody>
</table>

Trigger: Default setting is Auto Trigger at 50%
Time Interval (53131A, 53132A)
Measurement is specified over the full signal ranges of Channels 1 and 2.

Results Range: -1 ns to 10^5 s
LSD: 500 ps (53131)/150 ps (53132)

Phase (53131A, 53132A)
Measurement is specified over the full signal range of Channels 1 and 2.

Results Range: -180° to +360°

Duty Cycle (53131A, 53132A)
Measurement is specified over the full signal range of Channel 1. However, both the positive and negative pulse widths must be greater than 4 ns.

Results Range: 0 to 1 (e.g. 50% duty cycle would be displayed as .5)

6. See Specifications for Pulse Width and Rise/Fall Time measurements for additional restrictions on signal timing characteristics

Rise/Fall Time (53131A, 53132A)
Measurement is specified over the full signal ranges of Channel 1. The interval between the end of one edge and start of a similar edge must be greater than 4 ns.

Results Range: 5 ns to 10^5 s
LSD: 500 ps (53131)/150 ps (53132)

Pulse Width (53131A, 53132A)
Measurement is specified over the full signal range of Channel 1. The width of the opposing pulse must be greater than 4 ns.

Pulse Selection: Positive or Negative
Trigger: Default setting is Auto Trigger at 50%

Results Range: 5 ns to 10^5 s
LSD: 500 ps (53131)/150 ps (53132)

Totalize (53131A, 53132A)
Measurement is specified over the full signal range of Channel 1.

Results Range: 0 to 10^15
Resolution: ± 1 count

Peak Volts (53131A, 53132A, 53181A)
Measurement is specified on Channels 1 and 2 for dc signals; or for ac signals of frequencies between 100 Hz and 30 MHz with peak-to-peak amplitude greater than 100 mV.

Results Range: -5.1 V to +5.1 V
Resolution: 10 mV

Peak Volts Systematic Uncertainty
for ac signals: 25 mV + 10% of V
for dc signals: 25 mV + 2% of V
Use of the input attenuator multiplies all voltage specifications (input range, results range, resolution and systematic uncertainty) by a nominal factor of 10.

For measurements using Ch3, substitute Ch3 for Ch2 in these equations. To minimize relative phase measurement error, connect the higher frequency signal to channel 1.

Frequency Ratio: Ch1, Ch1, Ch2, Ch3 (53131A and 53132A) Ch1, Ch2, Ch1 (53181A)
LSD: Ratio 1/2: Ch2 Freq × Gate Time
Ratio 1/2: (Ch1 Freq × Gate Time)
RMS Resolution: Ratio 1/2: \(\frac{2 \sqrt{1 + (Ch1 Freq × Ch2 Trigger Error)^2}}{Ch2 Freq × Gate Time} \)
Ratio 2/3: \(\frac{2 \sqrt{1 + (Ch1 Freq × Ch2 Trigger Error)^2}}{(Ch1 Freq)^2 × Gate Time} \)
Systematic Uncertainty: ± 2x resolution

Phase (53131 and 53132)
RMS Resolution: \(\sqrt{(T_{res})^2 + (2 \times \text{Trigger Error})^2} \times (1 + \left(\frac{\text{Phase}}{360°} \right)^2) \times \text{Frequency} \times 360°^\circ \)
Systematic Uncertainty: \((\pm \text{Trigger Level Timing Error} \times 1.5 \text{ ns Differential Channel Error}) \times \text{Frequency} \times 360°^\circ \) \((\pm \text{Trigger Level Timing Error} \times 900 \text{ ps Differential Channel Error}) \times \text{Frequency} \times 360°^\circ \)

Duty Cycle (53131 and 53132)
RMS Resolution: \(\sqrt{(T_{res})^2 + (2 \times \text{Trigger Error})^2} + (1 + \text{Duty Cycle}) \times \text{Frequency} \)
\(t_{res} = 750 \text{ ps (53131A)} \quad 300 \text{ ps (53132A)} \)

Time Interval, Pulse Width, Rise/Fall Time (53131 and 53132 only):
RMS Resolution: \(\sqrt{(T_{res})^2 + (\text{Start Trigger Error})^2 + (\text{Stop Trigger Error})^2} \)

Systematic Uncertainty:
\(\pm (\text{Time Base Error} \times \text{Measurement}) \pm \text{Trigger Level Timing Error} \pm 1.5 \text{ ns Differential Channel Error (53131A)} \)
\(\pm (\text{Time Base Error} \times \text{Measurement}) \pm \text{Trigger Level Timing Error} \pm 900 \text{ ps Differential Channel Error (53132A)} \)
where \(t_{res} = 750 \text{ ps for the 53131A, 300 ps for the 53132A} \)
Gate Time

Auto Mode, or 1 ms to 1000 s

Measurement throughput

GPIB ASCII

200 measurements/s (maximum)

Measurement Arming

Start Measurement

Free Run, Manual, or External

Stop Measurement

Continuous, Single, External, or Timed

Time Interval

100 µs to 10 s (53131A)

100 ns to 10 s (53132A)

Arming Modes

(Note that not all arming modes are available for every measurement function.)

Auto Arming: Measurements are initiated immediately and acquired as fast as possible, using a minimum number of signal edges.

Timed Arming: The duration of the measurement is internally timed to a user-specified value (also known as the "gate time").

Digits Arming: Measurements are performed to the requested resolution (number of digits) through automatic selection of the acquisition time.

External Arming: An edge on the External Arm Input enables the start of each measurement. Auto Arming, Timed arming modes or another edge on the External Arm Input may be used to complete the measurement.

Time Interval Delayed Arming: For Time Interval measurements, the Stop Trigger condition is inhibited for a user-specified time following the Start Trigger. The 53132A offers advanced time interval arming capabilities including use of user specified time or Channel 2 events to delay both Start and Stop Triggers.

Measurement limits

Limit checking: The measurement value is checked against user-specified limits at the end of each measurement.

Display Modes: The measurement result may be displayed as either the traditional numeric value or graphically as an asterisk moving between two vertical bars.

Out-of-limits indications:

• The limits annunciator will light on the front panel display.
• The instrument will generate an SRQ if enabled via GPIB.
• The limits hardware signal provided via the RS-232 connector will go low for the duration of the out-of-limit condition.
• If the Analog Display mode is enabled, the asterisk appears outside the vertical bars, which define the upper and lower limits.

Fractional Time Base Error (see graph 3)

Time base error is the maximum fractional frequency variation of the time base due to aging or fluctuations in ambient temperature or line voltage:

\[
\text{Time Base Error} = \left(\frac{\Delta f}{f} \text{aging rate} + \frac{\Delta f}{f} \text{temperature} + \frac{\Delta f}{f} \text{line voltage} \right)
\]

Multiply this quantity by the measurement result to yield the absolute error for that measurement. Averaging measurements will not reduce (fractional) time base error. The counters exhibit negligible sensitivity to line voltage; consequently the line voltage term may be ignored.

Trigger Error

External source and input amplifier noise may advance or delay the trigger points that define the beginning and end of a measurement. The resulting timing uncertainty is a function of the slew rate of the signal and the amplitude of spurious noise spikes (relative to the input hysteresis band). The (rms) trigger error associated with a single trigger point is:

\[
\text{Trigger Error} = \sqrt{(E_{\text{input}}^2 + (E_{\text{signal}})^2)} \quad \text{(in seconds)}
\]

where

\(E_{\text{input}}\) = RMS noise of the input amplifier: 1 mVrms (350µVrms Typical). Note that the internal measurement algorithms significantly reduce the contribution of this term.

\(E_{\text{signal}}\) = RMS noise of the input signal over a 225 MHz bandwidth (100 kHz bandwidth when the low-pass filter is enabled). Note that the filter may substantially degrade the signal’s slew rate at the input of the trigger comparator.

For two-trigger-point measurements (e.g. Rise Time, Pulse Width), the Trigger Errors will be referred to independently as Start Trigger Error and Stop Trigger Error.

Trigger Level Timing Error (see graph 6)

Trigger level timing error results from a deviation of the actual trigger level from the specified level. The magnitude of this error depends on resolution and accuracy of the trigger level circuit, input amplifier fidelity, input signal slew rate, and width of the input hysteresis band.

The following equations should be summed together to obtain the overall Trigger Level Timing Error. At the "High" sensitivity input setting, the hysteresis band can be assumed to be the sensitivity of the counter input (see page 2). Reduction of input sensitivity or use of the attenuator will increase the size of this band.

\[
\text{Input Hysteresis Error:} \quad \frac{\text{Input Signal Slew Rate at Start Trigger Point}}{15 \text{ mV} \pm (1\% \times \text{Start Trigger Level Setting})} - \frac{\text{Input Signal Slew Rate at Stop Trigger Point}}{15 \text{ mV} \pm (1\% \times \text{Stop Trigger Level Setting})}
\]

\[
\text{Trigger Level Setting Error:} \quad \pm \frac{\text{Input Signal Slew Rate at Start Trigger Point}}{0.5 \times \text{Hysteresis Band}} - \frac{\text{Input Signal Slew Rate at Stop Trigger Point}}{0.5 \times \text{Hysteresis Band}}
\]

Differential Channel Error

The differential channel error term stated in several Systematic Uncertainty equations accounts for channel-to-channel mismatch and internal noise. This error can be substantially reduced by performing a TI calibration (accessible via the Utility Menu) in the temperature environment in which future measurements will be made.
Graph 1:
Agilent 53131A/181A—Worst Case RMS Resolution
(Automatic or External Arming)

The graphs may also be used to compute errors for Period Measurements. To find the Period error \(\Delta P \), calculate the frequency of the input signal \(F = 1/P \) and find the frequency error \(\Delta F \) from the chart.

Then calculate the period error as:

\[
\Delta P = \left(\frac{\Delta F}{F} \right) \times P
\]

Graph 2:
Agilent 53131A/181A—Worst Case RMS Resolution
(Time or Digits Arming)

Graph 3:
Timebase Error

7. Graphs 1, 2, 4 and 5 do not reflect the effects of trigger error. To place an upper bound on the added effect of this error term, determine the frequency error from the appropriate graph and add a trigger error term as follows:

Time or Digit Arming

\[
\text{Frequency Error} = \left(\frac{\sqrt{F}}{\text{Gate Time}} \times \text{Trigger Error} \right) \times \frac{1}{\text{Number of Samples}}
\]

Automatic or External Arming

\[
\text{Frequency Error} = \left(\frac{\sqrt{F}}{\text{Gate Time}} \times \text{Trigger Error} \right) \times \frac{1}{\text{Period}}
\]
Graph 4: Agilent 53132A—Worst Case RMS Resolution\(^7\) (Automatic or External Arming)

![Image of Graph 4]

Graph 5: Agilent 53132A—Worst Case RMS Resolution\(^7\) (Time or Digits Arming)

![Image of Graph 5]

Graph 6: Trigger Level Timing Error (Level Setting Error and Input Hysteresis)

![Image of Graph 6]

Measurement Statistics

Available Statistics
- Mean, Minimum,
- Maximum, Standard
- Deviation

Number of Measurements
- 2 to 1,000,000.

Statistics may be collected on all measurements or on only those which are between the limit bands. When the Limits function is used in conjunction with Statistics, N (number of measurements) refers to the number of in-limit measurements. In general, measurement resolution will improve in proportion to N, up to the numerical processing limits of the instrument.

Measurements
- Statistics may be collected for all measurements except Peak Volts and Totalize.

General Information

Save and Recall
- Up to 20 complete instrument setups may be saved and recalled later. These setups are retained when power is removed from the counter.

Rack Dimensions
- 88.5 mm x 212.6 mm x 348.3 mm

Weight
- 3.5 kg maximum

Warranty
- 1 year

Power Supply
- 100 to 120 VAC ± 10% -50, 60 or 400 Hz ± 10% 220 to 240 VAC ± 10% -50 or 60 Hz ± 10%

ac Line Selection
- Automatic

Power Requirements
- 170 VA maximum (30 W typical)

Environment
- 0° C to 55° C operating
- -40° C to 71° C storage

Remote Interface

Remote Programming
- SCPI-1992.0
- (Standard Commands Language for Programmable Instruments)

Safety
- Designed in compliance with IEC-1010, UL-3111-1 (draft), CAN/CSA 1010.1

EMC
- CISPR-11, EN50082-1, IEC 801-2, -3, -4

Radiated Immunity Testing
- When the product is operated at maximum sensitivity (20 mVrms) and tested at 3 V/m according to IEC 801-3, external 100 to 200 MHz electric fields may cause frequency miscounts.
Ordering Information
53131A 10 digit/s, 500 ps Universal Counter
53132A 12 digit/s, 150 ps Universal Counter
53181A 10-digit/s RF Counter

Accessories Included
Each counter comes with IntuiLink software, standard timebase, power cord, operating, programming and service manuals.

Manual Options (please specify one when ordering)
ABA US English
ABD German
ABE Spanish
ABF French
ABJ Japanese
ABZ Italian
ABO Taiwan Chinese
AB1 Korean
AB2 Chinese

Other Options
Opt. 001 Medium-stability timebase
Opt. 010 High-stability timebase
Opt. 012 Ultra-High stability timebase
(53132A only)
Opt. 015 1.5 GHz RF input Ch 2 for 53181A only
Opt. 030 3 GHz RF input Ch 3 (Ch 2 on 53181A)
Opt. 050 5 GHz RF input with type N connector Ch 3 (Ch 2 on 53181A)
Opt. 124 12.4 GHz RF input with type N connector Ch 3 (Ch 2 on 53181A)
Opt. 060 Rear-panel connectors*
Opt. 0B0 Delete Manual Set
Opt. 1BP MIL-STD-45662A Calibration with test data
Opt. 1CM Rack Mount Kit (P/N 5063-9240)**

Agilent Technologies' Test and Measurement Support, Services, and Assistance
Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlay Agilent’s overall support policy: “Our Promise” and “Your Advantage.”

Our Promise
Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you use Agilent equipment, we can verify that it works properly, help with product operation, and provide basic measurement assistance for the use of specified capabilities, at no extra cost upon request. Many self-help tools are available.

Your Advantage
Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and on-site education and training, as well as design, system integration, project management, and other professional services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

Product specifications and descriptions in this document subject to change without notice.
Copyright © 2001 Agilent Technologies
Printed in the USA May 1, 2004
5967-6039EN