Fields and Waves

Lesson 1.3

VECTOR CALCULUS - Line Integrals,Curl \& Gradient

DIFFERENTIAL LENGTHS

Representation of differential length dl in coordinate systems:
rectangular
$d \vec{l}=d x \bullet \hat{a}_{x}+d y \bullet \hat{a}_{y}+d z \bullet \hat{a}_{z}$
cylindrical

$$
d \vec{l}=d r \bullet \hat{a}_{r}+r d \phi \bullet \hat{a}_{\phi}+d z \bullet \hat{a}_{z}
$$

spherical

$$
d \vec{l}=d r \bullet \hat{a}_{r}+r d \theta \bullet \hat{a}_{\theta}+r \sin \theta d \phi \bullet \hat{a}_{\phi}
$$

LINE INTEGRALS

EXAMPLE: GRAVITY

Define Work or Energy Change: $\quad W=\int \vec{F} \bullet d \vec{l}$

- $(0,0, \mathrm{~h})$
Along
$(0,0,0)$
(2)
(1)

$$
\begin{aligned}
& d \vec{l}=d z \bullet \hat{a}_{z} \quad(\mathrm{dx} \& \mathrm{dy}=0) \\
& \vec{F} \bullet d \vec{l}=-m g d z \\
& \int \vec{F} \bullet d \vec{l}=-\int_{h}^{0} m g d z=m g h
\end{aligned}
$$

LINE INTEGRALS

Along (2)

$$
(d x \& d y=0)
$$

$$
d \vec{l}=d y \bullet \hat{a}_{y}
$$

Final Integration: $W=\int \vec{F} \bullet d \vec{l} \Rightarrow W=m g h$

LINE INTEGRALS

Note: For the first integral, DON'T use $d \vec{l}=-d z \bullet \hat{a}_{z}$ Negative Sign comes in through integration limits

For PROBLEM 1a - use Cylindrical Coordinates:

Differential
Line Element

$$
d \vec{l}=d r \bullet \hat{a}_{r}+r d \phi \bullet \hat{a}_{\phi}+d z \bullet \hat{a}_{z}
$$

Implies a CLOSED LOOP Integral

LINE INTEGRALS - ROTATION or CURL

$\oint \vec{A} \bullet d \vec{l}$

Measures Rotation or Curl

For example in Fluid Flow:

Means ROTATION or "EDDY CURRENTS"

Integral is performed over a large scale (global)

However, $\quad \nabla \times \vec{v}$, the "CURL of v " is a local or a POINT measurement of the same property

ROTATION or CURL

NOTATION: $\nabla \times \vec{v}$ is NOT a CROSS-PRODUCT

Result of this operation is a VECTOR

Note: We will not go through the derivation of the connection between

More important that you understand how to apply formulations correctly
To calculate CURL, use formulas in the TEXT

ROTATION or CURL

Example: SPHERICAL COORDINATES

We quickly note that:

$$
A_{r}=A_{\phi}=0
$$

ROTATION or CURL

$\nabla \times \vec{A}$

 , has 6 terms - we need to evaluate each separatelyStart with last two terms that have ϕ - dependence:
$\hat{a}_{\phi} \cdot \frac{1}{r}\left[\frac{\partial}{\partial r}\left(r A_{\theta}\right)-\frac{\partial A_{r}}{\partial \theta}\right]=\hat{a}_{\phi} \cdot \frac{1}{r} \frac{\partial}{\partial r}\left(\frac{c \cdot \sin \theta}{r}\right)$
$=\hat{a}_{\phi} \cdot \frac{c \sin \theta}{r^{2}} \cdot\left(-\frac{1}{r^{2}}\right)$
$=\frac{-c \sin \theta}{r^{3}} \cdot \hat{a}_{\phi}$

ROTATION or CURL

4 other terms include: two A_{ϕ} terms and two A_{r} terms $\| \square 0$
Example:

$$
\hat{a}_{r} \cdot \frac{1}{r \sin \theta}\left(-\frac{\partial A_{\theta}}{\partial \phi}\right)=0 \text {, because } A_{\theta} \text { has NO PHI DEPENDENCE }
$$

THUS,

Do Problem 1 b and Problem 2

GRADIENT

GRADIENT measures CHANGE in a SCALAR FIELD

- the result is a VECTOR pointing in the direction of increase

For a Cartesian system:

$$
\nabla f=\frac{\partial f}{\partial x} \cdot \hat{a}_{x}+\frac{\partial f}{\partial y} \cdot \hat{a}_{y}+\frac{\partial f}{\partial z} \cdot \hat{a}_{z}
$$

Do Problems 3 and 4

You will find that
 $\nabla \times \nabla f=0$
 ALWAYS

$$
\text { IF } \vec{F}=\nabla f \text {, then } \nabla \times \vec{F}=0 \text { and } \oint \vec{F} \bullet d \vec{l}=0
$$

