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Lesson 2.2

ELECTROSTATICS - GAUSS’ LAW



MAXWELL’S FIRST EQUATION

ρ=•∇ D
r

Differential Form

∫ ∫ =⋅=• enclQdvsdD ρrr

Integral Form
Enclosed
Charge

- ‘dv’ integral over volume enclosed
by ‘ds’ integral

ED
rv

0ε=
constant

For vacuum and air - think of D and E as
being the same

D vs E depends on materials



Do Problem 1

Use Gauss’ Law to find D and E in symmetric problems

GAUSS’ LAW - strategy

∫ ∫ =⋅=• enclQdvsdD ρrr
Get D or E out of integral

Always look at symmetry of the problem - and take
advantage of this



GAUSS’ LAW - use of symmetry

Example: A sheet of charge - charges are infinite in extent on
say x,y plane
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Arbitrary Point 
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Surface of
infinite extent of
charge

E
r

, is sum due to all charges

E
r

, points in zâ
• all other components cancel
• only a function of z (not x or y)

Can write down:

zz azEE ˆ)( ⋅=
r



GAUSS’ LAW

Do Problem 2a

Problem 2b ∫ • sdE rr
,is constant.
For example a planar sheet of charge,
where z is constant

Problem 2c To use GAUSS’ LAW, we need to find a surface
that encloses the volume
GAUSSIAN SURFACE - takes advantage of symmetry

zz azEE ˆ)( ⋅=
r

rr arEE ˆ)( ⋅=
r

- when ρ is only a f(r)

- when ρ is only a f(z)



GAUSS’ LAW

∫ ∫ =⋅=• enclQdvsdD ρrr

Use Gaussian surface to “pull” this out of integral

Integral now becomes:

∫ ∫ =⋅=⋅ enclQdvsdD ρrr

Usually an easy integral for surfaces
under consideration



GAUSS’ LAW

Example of using GAUSS’ law to find E
r
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-a < z < a

Z > a ; z< -a

Z = a

Z = -a

“a slab of charge”
By symmetry: zz azEE ˆ)( ⋅=

r

If ρ0 > 0, then
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From symmetry



GAUSS’ LAW

E
r

sdr

E
r

sdr

sdr

First get E
r

in region |z| < a and
create a surface at
arbitrary z

Use Gaussian surface with top at z = z’ and the bottom at -z’

Note: Gaussian Surface is NOT a material boundary



GAUSS’ LAW

∫ ∫ ⋅=• dvsdE0 ρε rr

Evaluate LHS:

∫ ∫ ∫ ∫ •+•+•=•
TOP BOTTOM SIDE

sdEsdEsdEsdE rrrrrrrr

=0, since sdE rr
⊥

These two integrals are equal

∫ ∫ •=•
TOP

sdE2sdE rrrr



GAUSS’ LAW

∫ ⋅⋅⋅=⋅∫ =•⋅ 2
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Key Step: Take E out of the Integral

Computation of enclosed charge

∫ ∫ ⋅⋅⋅⋅=⋅⋅⋅=⋅
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GAUSS’ LAW

∫ ∫ ⋅=• dvsdE0 ρε rr
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(drop the prime)

Do Problem 3a



GAUSS’ LAW

Back to rectangular, slab geometry example…..

Need to find E
r

, for |z| > a

Z = -a

Z = a

ρ0

Z = -z’

Z = z’



GAUSS’ LAW

As before,
∫ ∫ ⋅⋅⋅=•⋅=•

TOP

2
z rE2sdE2sdE πrrrr

Computation of enclosed charge
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0 ra2dzrdv ρππρρ ⋅∫ ∫ ⋅⋅⋅=⋅⋅⋅=⋅
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Note that the z-integration is from -a to a ;
there is NO CHARGE outside |z|>a



GAUSS’ LAW

∫ ∫ ⋅=• dvsdE ρε rr
0

0
22

0 22 ρππε ⋅⋅⋅⋅=⋅⋅⋅⋅ rarEz

Once again,

For the region outside |z|>a
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0 ⋅⋅=
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ρr



GAUSS’ LAW

E
r

Plot of E-field as a function of z for planar example
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Note: E-field is continuous


