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Lesson 2.3

ELECTROSTATICS - POTENTIALS



MAXWELL’S SECOND EQUATION

Lesson 2.2 looked at Maxwell’s 1st equation:
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Today, we will use Maxwell’s 2nd equation:
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Importance of this
equation is that it allows
the use of Voltage or
Electric Potential



POTENTIAL ENERGY

Work done by a force is given by: ∫ • ldF
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Example : GRAVITY

• going DOWN increases KE, decreases PE
• going UP increases PE, decreases KE



POTENTIAL ENERGY

If dealing with a conservative force, can use concept of
POTENTIAL ENERGY

For gravity, the potential energy has the form mgz

Define the following integral:
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POTENTIAL ENERGY

Since ∫ =• 0ldE
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Also define: Voltage = Potential Energy/Charge
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POTENTIAL ENERGY

Example: Use case of point charge at origin and obtain potential
everywhere from E-field

ra
r

qE ˆ
4 2

0

⋅=
πε

r
Spherical
Geometry

Point charge 
at (0,0,0)

r ld
r ∞

Integration Path

infinity
Reference:
V=0 at infinity



POTENTIAL ENERGY
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The integral for computing the potential of the point charge is:
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POTENTIAL ENERGY - problems

Do Problem 1a

Hint for 1a:

Use r=b as the
reference -
Start here and
move away or
inside r<b
region

R=a

R=b

R=r



POTENTIAL ENERGY - problems

For conservative fields:
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,which implies that:
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From vector calculus:

0=∇×∇ f ,for any field f Can write: fE ∇=
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POTENTIAL SURFACES

Potential is a SCALAR quantity

Graphs are done as Surface Plots or Contour Plots

Example - Parallel Plate Capacitor
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E-field from Potential Surfaces

VE −∇=
rFrom: 

Gradient points in the direction of largest change

Therefore, E-field lines are perpendicular (normal) to
constant V surfaces

Do problem 2

(add E-lines to potential plot)



Numerical Simulation of Potential

In previous lesson 2.2, problem 3 and today in problem 1,

Given ρ or Q E-field V
derive derive

Look for techniques so that V
derive

, given ρ or Q



Numerical Simulation of Potential

For the case of a point charge:
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, is field point where we are measuring/calculating V

, is location of charge



Numerical Simulation of Potential

For smooth charge distribution:
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Volume charge distribution

Line charge distribution



Numerical Simulation of Potential
Problem 3

Setup for Problem 3a and 3b

Line charge:

Location of
measurement of V
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Integrate along charge means dl is dz
Line charge distribution



Numerical Simulation of Potential
Problem 3 contd...

Numerical Approximation

Break line charge into 4 segments
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Numerical Simulation of Potential
Problem 3 contd...

For Part e….
Get V(r = 0.1) and V(r = 0.11)
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So..use 2 points to get ∆V and ∆r

Use:

• V  is a SCALAR field and easier to work with
• In many cases, easiest way to get E-field is
to first find V and then use, VE −∇=

r


