# Fields and Waves

Lesson 2.3

# **ELECTROSTATICS - POTENTIALS**

#### MAXWELL'S SECOND EQUATION

### Lesson 2.2 looked at Maxwell's 1st equation:

$$\nabla \bullet \vec{D} = \rho$$

$$\oint \vec{D} \bullet d\vec{s} = \int \rho \cdot dv$$

Today, we will use Maxwell's 2nd equation:





Importance of this equation is that it allows the use of *Voltage* or *Electric Potential* 

Work done by a force is given by:  $\int \vec{F} \cdot d\vec{l}$ 

$$\int \vec{F} \bullet d\vec{l}$$



If vectors are parallel, particle gains energy - Kinetic Energy

If, 
$$\oint \vec{F} \cdot d\vec{l} = 0$$

**Conservative Force** 



**Example: GRAVITY** 

- going DOWN increases KE, decreases PE
- going UP increases PE, decreases KE

If dealing with a conservative force, can use concept of POTENTIAL ENERGY

For gravity, the potential energy has the form mgz

Define the following integral:

$$-\int_{P_1}^{P_2} \vec{F} \cdot d\vec{l} =$$
 Potential Energy Change

Since 
$$\oint \vec{E} \cdot d\vec{l} = 0$$
 and  $\vec{F} = q \cdot \vec{E}$ 

We can define:

Potential Energy = 
$$-\int_{P_1}^{P_2} q \cdot \vec{E} \cdot d\vec{l}$$

Also define: Voltage = Potential Energy/Charge

$$V(P_2) - V(P_1) = -\int_{P_1}^{P_2} \vec{E} \cdot d\vec{l}$$

Voltage always needs
reference or use
voltage difference

Example: Use case of <u>point charge</u> at origin and obtain potential everywhere from E-field

Spherical Geometry

$$\vec{E} = \frac{q}{4\pi\varepsilon_0 r^2} \cdot \hat{a}_r$$



Reference: V=0 at infinity

The integral for computing the potential of the point charge is:

$$V(r) - V(r) = \infty) = -\int_{r=\infty}^{r} \vec{E} \cdot d\vec{l}$$

$$\therefore V(r) = -\int_{r=\infty}^{r} E \cdot dr$$

$$= -\int_{r=\infty}^{r} \frac{q}{4\pi\varepsilon_0 r^2} \cdot dr$$

$$V(r) = \frac{q}{4\pi\varepsilon_0 r}$$



$$V(r) = \frac{q}{4\pi\varepsilon_0 r}$$

# POTENTIAL ENERGY - problems

Do Problem 1a

Hint for 1a:



Use r=b as the reference Start here and move away or inside r<br/>b region

## POTENTIAL ENERGY - problems

#### For conservative fields:

$$\oint \vec{E} \cdot d\vec{l} = 0$$
 ,which implies that:

$$\oint \nabla \times \vec{E} \bullet d\vec{s} = 0$$
 , for any surface

$$: \nabla \times \vec{E} = 0$$

#### From vector calculus:

$$abla imes 
abla f$$
 Can write:  $\vec{E} = 
abla f$ 

Define:

$$\vec{E} = -\nabla V$$

## POTENTIAL SURFACES

Potential is a SCALAR quantity

Graphs are done as Surface Plots or Contour Plots

Example - Parallel Plate Capacitor



#### E-field from Potential Surfaces

From:

$$\vec{E} = -\nabla V$$

Gradient points in the direction of largest change

Therefore, E-field lines are perpendicular (normal) to constant V surfaces

(add E-lines to potential plot)

Do problem 2

#### **Numerical Simulation of Potential**

In previous lesson 2.2, problem 3 and today in problem 1,



Look for techniques so that , given ρ or Q derive

#### **Numerical Simulation of Potential**

For the case of a point charge:

$$V = \frac{q}{4\pi \varepsilon_0 r} = \frac{q}{4\pi \varepsilon_0 |\vec{r} - \vec{r'}|} = V(\vec{r})$$
Distance from charge

- $\overrightarrow{r}$  , is field point where we are measuring/calculating V
- $\vec{r}'$ , is location of charge

#### **Numerical Simulation of Potential**

## For smooth charge distribution:

$$V(\vec{r}) = \iiint \frac{\rho(\vec{r}') \cdot dv'}{4\pi\varepsilon_0 |\vec{r} - \vec{r}'|}$$

Volume charge distribution

$$V(\vec{r}) = \int \frac{\rho(\vec{r}) \cdot d\vec{l}}{4\pi\varepsilon_0 |\vec{r} - \vec{r}'|}$$

Line charge distribution

# Numerical Simulation of Potential Problem 3



Line charge:







Integrate along charge means *dl* is *dz* 

# Numerical Simulation of Potential Problem 3 contd...

## **Numerical Approximation**





Charge for each segment

$$q=
ho_l\cdot\Delta l$$
  
Segment  
length

$$V = \sum_{\text{4charges}} \frac{q_i}{4\pi \varepsilon_0 |\vec{r} - \vec{r}_i|}$$

Distance to charge

# Numerical Simulation of Potential Problem 3 contd...

For Part e....

Get 
$$V(r = 0.1)$$
 and  $V(r = 0.11)$ 

Use:

$$|\vec{E}| = -\nabla V = -\frac{\partial V}{\partial r} \hat{a}_r \approx -\frac{\Delta V}{\Delta r} \hat{a}_r$$

So..use 2 points to get  $\Delta V$  and  $\Delta r$ 

- V is a SCALAR field and easier to work with
- In many cases, easiest way to get E-field is to first find V and then use,  $\vec{F} \nabla V$