Fields and Waves

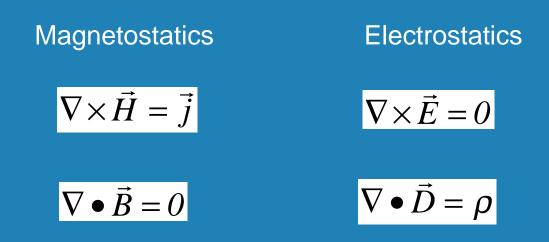
Lesson 3.2

MAGNETOSTATICS

Darryl Michael/GE CRD

Introduction to B & H Fields

Introduced to Magnetostatic form of Maxwell's equations
Calculate B and H fields from I and J in symmetric cases


Maxwell's Equations:

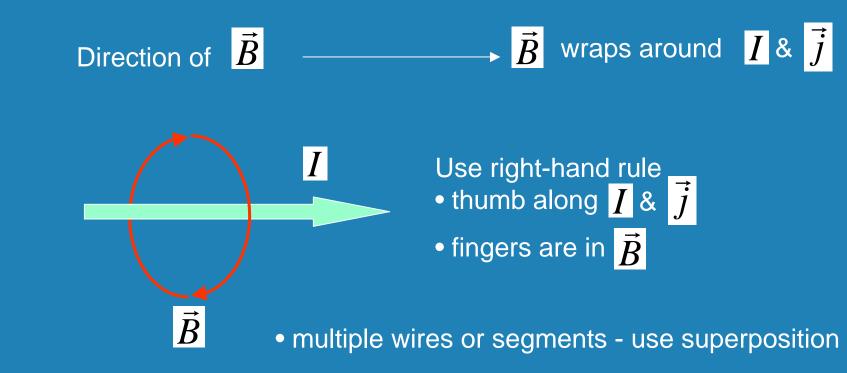
Ampere's Law

$$\nabla \times \vec{H} = \vec{j} \longrightarrow \oint \vec{H} \bullet d\vec{l} = \int \vec{j} \bullet d\vec{s} = I_{net}$$

Integral form
$$\nabla \bullet \vec{B} = 0 \longrightarrow \oint \vec{B} \bullet d\vec{s} = 0$$

For now, $\vec{B} = \mu_0 \cdot \vec{H}$ with μ_0 as a constant

Maxwell's equations


have curl (rotation) but no divergence (flux)

do not have curl (rotation) but have divergence (flux)

Do Problem 1

B-Fields

Do problem 2 - add up B-field for different segments - see what cancels and what adds up - use symmetry

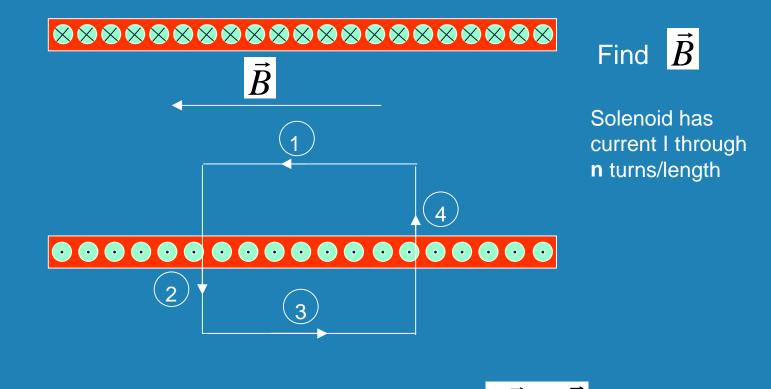
Ampere's Law - solve for B & H

$$\oint \vec{H} \bullet d\vec{l} = \int \vec{j} \bullet d\vec{s} = I_{net}$$

or

$$\vec{B} \bullet d\vec{l} = \mu_0 \cdot \int \vec{j} \bullet d\vec{s} = \mu_0 \cdot I_{net}$$

Approach similar to using Gauss' Law, use symmetry to get B-field out of integral


sectional view

Example: Consider an infinite wire solenoid

 \vec{B}, \vec{H}

STEP 1: Choose path for integral - $\oint \vec{B} \bullet d\vec{l}$

Chosen paths are 1,2, 3 and 4 - they form a closed loop

Ampere's Law - Infinite Solenoid

STEP 2: Evaluate
$$\oint \vec{B} \bullet d\vec{l}$$

• Segments 2 and 4 have $\vec{B} \perp d\vec{l}$

$$\therefore \oint \vec{B} \bullet d\vec{l} \Longrightarrow 0$$

• Segment 3 has $\vec{B} \rightarrow 0$ (will show later)

• Segment 1 has $\oint \vec{B} \bullet d\vec{l} = \int_{0}^{l} B_{z} \cdot dz = B_{z} \cdot l$

arbitrary length

Ampere's Law - Infinite Solenoid

STEP 3: find I_{net}

• current passing through loop :

$$I_{net} = n \cdot l \cdot I$$

STEP 4: solve for
$$\vec{B}$$

$$\vec{S} \vec{B} \bullet d\vec{l} = \mu_0 \cdot \int \vec{j} \bullet d\vec{s} = \mu_0 \cdot I_{net}$$

Do problem 3a and 3b