Fields and Waves

Lesson 3.3

MAGNETOSTATICS - the Vector Potential

Darryl Michael/GE CRD

Introduction to Vector Potential, \vec{A}

Previous lesson we used: $\oint \vec{H} \bullet d\vec{l} = \int \vec{j} \bullet d\vec{s} = I_{net}$

This lesson we will look at the effect of

$$\nabla \bullet \vec{B} = 0 \Longrightarrow \oint \vec{B} \bullet d\vec{s} = 0$$

This surface integral encloses the volume

Recall,

$$\nabla \bullet \vec{B} = 0 \Longrightarrow \int \nabla \bullet \vec{B} \cdot dv = \oint \vec{B} \bullet d\vec{s} = 0$$

Concept of Flux Tubes

Concept of Flux Tubes

• implications are that, \vec{B} lines close on themselves - no beginning or end

• in contrast, static \vec{E} lines start & end on charges

Do Problem 2a

Magnetic Vector Potential, \vec{A}

In electrostatics:

$$\nabla \times \vec{E} = 0 \Longrightarrow \vec{E} = -\nabla V$$

In magnetostatics:

$$\nabla \bullet \vec{B} = 0$$

• there is a math theorem that states : $\nabla \cdot (\nabla \times \vec{F}) = 0$, for any \vec{F} • this means that you can find \vec{A} , with $\vec{B} \equiv \nabla \times \vec{A}$ *Note:* • more than one \vec{A} possible • like \vec{V} , \vec{A} can be easier to work with than the field

Do problems 2b and 2c

$$\Psi = \int \vec{B} \bullet d\vec{s} = \int \nabla \times \vec{A} \bullet d\vec{s} = \oint \vec{A} \bullet d\vec{l}$$

After some math....

Alternative way to find FLUX