Fields and Waves

Lesson 3.5

INDUCTANCE

Inductances

Two types of Inductances:

- self inductance e.g. inductors
- mutual inductance e.g. transformers

Self Inductance:

- ullet coil of wire with $oldsymbol{I_1}$, creates $oldsymbol{ec{B}}$
- wire loop intersects $\int \vec{B} \cdot d\vec{s}$
- this creates $e.m.f. = -\frac{d}{dt} \int \vec{B} \cdot d\vec{s}$

Self Inductance

Do Problem 1

$$\oint \vec{E} \bullet d\vec{l} = e.m.f. = -\frac{d}{dt} \int \vec{B} \bullet d\vec{s} = -\frac{d\Psi}{dt}$$

For 1 turn:
$$= -\frac{d}{dt} \left(\frac{\Psi}{I} \right) \cdot I = -\frac{d}{dt} (L \cdot I)$$

For N turns:
$$=\frac{d\Sigma\Psi}{dt}=\frac{d\Lambda}{dt}$$
 , and $L=\frac{\Lambda}{I}$

Since
$$\vec{B} \propto I$$
 : $\Psi, \Lambda \propto I$ is independent of I

L depends on materials (through μ) and geometry (like C)

Self Inductance

In general:

$$L \propto N^2$$
 , because

• x N, because
$$\vec{B} \propto N$$

• x N, because
$$\Lambda = \sum \Psi = N \cdot \Psi$$

Note: To calculate L, don't need Faraday's Law just need: $L = \frac{\Lambda}{2}$

eed:
$$L = \frac{1}{I}$$

The flux linkage, $\Lambda = N \cdot \Psi$, only if all loops intersect same flux

ullet not true for finite solenoid and will need: $A=\sum \! \Psi$

$$\Lambda = \sum \Psi$$

Computation of
$$\Psi = \int \vec{B} \cdot d\vec{s} = \oint \vec{A} \cdot d\vec{l}$$
 Can use either method

Mutual Inductance

Mutual Inductance:

Current through Coil 1 induces e.m.f. in Coil 2

Mutual Inductance

$$L_{21} = \frac{\Lambda_{21}}{I_1}$$

where,
$$\Lambda_{2I} = \int \vec{B}_I \cdot d\vec{s}_2$$

Mutual Inductance

Also,
$$emf_2 = L_{21} \cdot \frac{dI_1}{dt}$$

And,
$$L_{12} = L_{21}$$