Reading assignment

Ulaby, 3-5
Connor and Salon, II-26 \rightarrow II-34

Software

div_curl_example.m
Maple (check your solutions)

Problem 1 - Surface integrals

Calculate $\int \mathrm{A} \bullet \mathrm{ds}$ for each of the following cases.
a. $\quad \mathbf{A}=3 \mathbf{a}_{\mathrm{r}^{\prime}}$ surface is $\mathrm{r}=3,0 \leq \varphi \leq \pi / 3,-2 \leq \mathrm{z} \leq 2$.
b. $\quad \mathbf{A}=2 \mathrm{r} \mathbf{a}_{\mathrm{r}}+6 \mathrm{r} \mathbf{a}_{\theta}$, surface is $0 \leq \mathrm{r} \leq 5, \theta=\pi / 3,0 \leq \varphi \leq 2 \pi$.

Problem 2 - Divergence

Calculate $\nabla \bullet \mathbf{A}$ for each of the vectors below.
a. $\quad \mathbf{A}=x^{2} y \mathbf{a}_{\mathrm{x}}+c^{2} \mathrm{x} \mathbf{a}_{\mathrm{z}}$
b. $\quad \mathbf{A}=c / r^{2} \mathbf{a}_{\mathrm{r}}+\mathrm{e}^{-j \beta r} \sin \theta / \mathrm{r} \mathbf{a}_{\varphi}$
c and β are constants. Use the worksheet associated with Problem 2.10.4 in "Visual Electromagnetics for Mathcad" to check your answer. (You may have to use specific numbers instead of the variables c and β.

Problem 3 - Divergence theorem

Show that the divergence theorem is valid by calculating $\int(\nabla \bullet \mathbf{A}) d v$ and $\oint \mathbf{A} \bullet d$ d for the vector \mathbf{A} of Problem 2a. The volume integral should be for a cube with sides of length 1 as shown below. One of the corners is located on the origin.

