Electromagnetic Plane Waves in Lossless Media

Reading assignment

Ulaby, 7-1, 7-2, 7-6.1

Connor and Salon, Unit IX

Problem 1 - Intro to electromagnetic waves

The electric field of a plane wave is given by $\mathbf{E} = \mathbf{E}_{m} \cos(\omega t - \beta z) \mathbf{a}_{v}$.

- a. Write **E** in phasor form.
- b. Under what conditions does **E** satisfy the wave equation (in phasor form), $\partial^2 E_x/\partial z^2 = -\mu \epsilon \omega^2 \, E_x \, ?$
- c. What is the velocity of a plane wave in free space?
- d. What are typical values of f, ω , T (=1/f), β , and λ for X-rays, visible light, microwaves, and FM radio in free space? (Check the walls of the studio).
- e. Find **H** using the phasor form of the ∇ x **E** equation. Assume the **E** and **H** phasors are only a function of z.
- f. Evaluate the amplitude ratio, $\eta = |\mathbf{E}| / |\mathbf{H}|$. Express η in terms of material properties.
- g. If E was in the a_V direction, what direction would H be in?
- h. Run the Java applet linked through the course homepage.
- i. How many independent parameters are there in the following set? ω , β , μ , ϵ , η , λ , T

Problem 2 - Waves in lossless media

WRPI broadcasts at 91.5 MHz. The amplitude of **E** on campus is roughly 0.08 V/m. Assume a coordinate system in which the wave is polarized in the \mathbf{a}_y direction and propagating in the \mathbf{a}_z direction. Assume the phase = 0 at z = 0.

- a. What are β , η and λ for this wave?
- b. Write the electric and magnetic fields in phasor form.
- c. Write the electric field in time domain form.

Problem 3 - Energy & Power - lossless media

- a. What is the average energy density of the electric and magnetic fields for the WRPI signal on campus? (Use Prob. 2 results).
- b. What is the time average Poynting vector of the wave, S_{av} ? Divide its magnitude by the speed of light and compare with your answer from part a.
- c. The transmitter is about 10 km from campus. What transmitter power is required to radiate the same power density into a sphere of radius 10 km?