Reading assignment

Ulaby, 3-5

Connor and Salon, II-26 \rightarrow II-34

Software

div_curl_example.m

Problem 1 - Surface integrals

Calculate $\int A \cdot ds$ for each of the following cases.

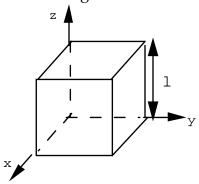
a. **A** = 3 \mathbf{a}_{r} , surface is r = 3, $0 \le \phi \le \pi/3$, $-2 \le z \le 2$.

b. $A = 2r a_r + 6r a_{\theta}$, surface is $0 \le r \le 5$, $\theta = \pi/3$, $0 \le \phi \le 2\pi$.

Problem 2 - Divergence

Calculate $\nabla \cdot \mathbf{A}$ for each of the vectors below.

a. $\mathbf{A} = x^2 y \, \mathbf{a}_x + c^2 x \, \mathbf{a}_z$


b. $\mathbf{A} = c / r^2 \mathbf{a}_r + e^{-j\beta r} \sin\theta / r \mathbf{a}_{\varphi}$

c and β are constants. Use the worksheet associated with Problem 2.10.4 in "Visual Electromagnetics for Mathcad" to check your answer. (You may have to use specific numbers instead of the variables c and β .

Problem 3 - Divergence theorem

Show that the divergence theorem is valid by calculating $\int (\nabla \cdot \mathbf{A}) dv$ and

 $\int \mathbf{A} \cdot d\mathbf{s}$ for the vector \mathbf{A} of Problem 2a. The volume integral should be for a cube with sides of length 1 as shown below.

