Reading assignment

Ulaby, 4-5
Connor and Salon, II-10 \rightarrow II-26

Problem 1 - Determine V from E

Take the electric field from Lesson 2.2, Problem 3. Assume that the outer cylinder is grounded.
a. Find the voltage as a function of r for $\mathrm{r}>b$ and $b>\mathrm{r}>a$.
b. Check your result by evaluating $-\nabla \mathrm{V}$.
c. Find the voltage at $\mathrm{r}=0$.

Problem 2 - Equipotential lines

Plot a set of electric field lines and equipotential lines for the quadrupole set of charges below. Dipole equipotentials can be viewed with the Mathcad worksheet for 3.6.2.

Problem 3 - Find V from charge-Analytic and Approximation

a. Approximate the line charge as a set of 4 point charges. Calculate the voltage from the 4 point charges in the plane $\mathrm{z}=0$.
b. When $\rho_{1}=10^{-10} \mathrm{C} / \mathrm{m}$ and $\mathrm{L}=0.2 \mathrm{~m}$, numerically evaluate V at $\mathrm{r}=0.1 \mathrm{~m}$ and $\mathrm{r}=0.11 \mathrm{~m}$.
c. Using your results from part b , estimate the electric field at $\mathrm{r}=0.105 \mathrm{~m}$.
d. Find the exact expression for the electric potential at $\mathrm{z}=0$ as a function of r due to a line charge ρ_{1} that extends from $z=-L / 2->L / 2$. You'll probably want to use Maple.
e. Find the \mathbf{E} on the $\mathrm{z}=0$ plane. Using the values from part b , obtain an exact expression for the field at $\mathrm{r}=0.105$. How does this answer compare with part c ?

