Reading assignment

Ulaby, 7-3

Problem 1 - polarization

Consider a wave travelling in the z direction whose electric field is given by $E(z, t)=3 \cos (\omega t-\beta z) \mathbf{a}_{x}+C \cos (\omega t-\beta z+\phi) \mathbf{a}_{y}$. Describe the polarization (e.g. linear, right circular, etc.) and on an xy plot sketch the locus of $\mathrm{E}(0, \mathrm{t})$ over a cycle for the following cases.
a) $\mathrm{C}=4 \mathrm{~V} / \mathrm{m}, \phi=0^{\circ}$
b) $\mathrm{C}=3 \mathrm{~V} / \mathrm{m}, \phi=45^{\circ}$

Problem 2 - Arbitrary propagation angle
The direction of \mathbf{E} and γ of a electromagnetic wave with $\lambda=500 \mathrm{~nm}$ are shown below. The wave is traveling through air. The electric field has a magnitude of $30 \mathrm{~V} / \mathrm{m}$. What are the \mathbf{E} and \mathbf{H} phasors?

y axis is out of the page

