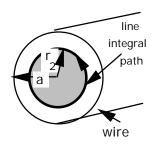
Reading assignment

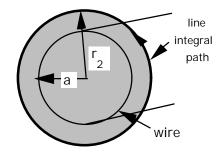
Popović and Popović, Appendix 1 Connor and Salon, II-39 → II-44

Software

div_curl_example.m

Problem 1 - Line integrals & curl


The magnetic field of a straight wire of radius a which has a constant current density J_0 , is given by:


 $\mathbf{B} = \mu_0 \, J_0 \, r / \, 2 \, \mathbf{a}_0 \qquad \text{inside the wire } (r < a)$

 $\mathbf{B} = \mu_0 J_0 a^2 / (2 r) \mathbf{a}_0$ outside the wire (r > a).

where μ_0 and J_0 are constants.

a. Calculate $\oint \mathbf{B} \cdot \mathbf{dl}$ around the 2 paths shown in the figure below. (The drawing shows a view as if the wire had been cut).

b. Calculate $\nabla \times \boldsymbol{B}$ for both regions.

Problem 2 - Properties of fields with curl

The electric field created by a cylinder of radius a with constant charge density ρ_0 is:

 $\mathbf{E} = \rho_0 \, \mathbf{r} / (2 \, \epsilon_0) \, \mathbf{a}_r$ inside the cylinder $(\mathbf{r} < a)$ and

 $\mathbf{E} = \rho_0 \ a^2 \ / \ (2 \ \epsilon_0 \ r) \ \mathbf{a}_r$ outside the cylinder (r > a).

where ρ_0 and ϵ_0 are constants.

a. Verify that $\oint \mathbf{E} \cdot d\mathbf{l} = 0$ on the same path as above and that $\nabla \times \mathbf{E} = 0$.

b. An illustration of the $\bf E$ and $\bf B$ fields can be obtained by running div_curl_example.m using matlab. Fig. 1 is the $\bf B$ field while Figure 3 is the $\bf E$ field. What are the properties of a field with non-zero curl?

Problem 3 - Stokes theorem

Calculate $\int (\nabla \times \mathbf{B}) \cdot \mathbf{ds}$ over the surface area enclosed by the 2 paths in Problem 1 (the shaded area). Compare your answer with the result from Problem 1a.

Problem 4 - Gradient

Compute the gradient of the following functions.

a.
$$f = 8 a^2 \cos \phi + 2rz$$
 (cylindrical)

b.
$$f = a \cos 2\theta / r$$
 (spherical)

Use the worksheet associated with Problem 2.8.1 in "Visual Electromagnetics for Mathcad" to check your answer. (You may have to use a specific number instead of the variable *a*).

c. Calculate $\nabla \times \nabla$ f for each of the functions above.