Reading assignment

Popović and Popović, A ppendix 1
Connor and Sal on, II-39 \rightarrow II-44

Software

div_curl_example.m

Problem 1-Line integrals \& curl

The magnetic field of a straight wire of radius a which has a constant current density J_{0}, is given by:
$\mathbf{B}=\mu_{0} J_{0} r / 2 \mathbf{a}_{\varphi}$ inside the wire ($\mathrm{r}<\mathrm{a}$)
$\mathbf{B}=\mu_{0} J_{0} a^{2} /(2 r) \mathbf{a}_{\varphi} \quad$ outside the wire $(r>a)$. where μ_{0} and J_{0} are constants.
a. Calculate $\oint \mathbf{B} \cdot \mathbf{d l}$ around the 2 paths shown in the figure below. (The drawing shows a view as if the wire had been cut).

b. Calculate $\nabla \times \mathbf{B}$ for both regions.

Problem 2 - Properties of fields with curl
The electric field created by a cylinder of radius a with constant charge density ρ_{0} is:
$\mathbf{E}=\rho_{0} r /\left(2 \varepsilon_{0}\right) \mathbf{a}_{r} \quad$ inside the cylinder ($r<a$) and
$\mathbf{E}=\rho_{0} a^{2} /\left(2 \varepsilon_{0} r\right) \mathbf{a}_{r} \quad$ outside the cylinder ($\left.r>a\right)$.
where ρ_{0} and ε_{0} are constants.
a. Verify that $\oint \mathbf{E} \cdot \mathbf{d l}=0$ on the same path as above and that $\nabla \times \mathbf{E}=0$.
b. An illustration of the \mathbf{E} and \mathbf{B} fields can be obtained by running div_curl_example.m using matlab. Fig. 1 is the \mathbf{B} field while Figure 3 is the \mathbf{E} field. What are the properties of a field with non-zero curl?

Problem 3-Stokes theorem

Calculate $\int(\nabla \times \mathbf{B}) \cdot d$ ds over the surface area enclosed by the 2 paths in Problem 1 (the shaded area). Compare your answer with the result from Problem 1a.

Problem 4-Gradient

Compute the gradient of the following functions.
a. $\quad f=8 a^{2} \cos \phi+2 r z \quad$ (cylindrical)
b. $\quad f=a \cos 2 \theta / r \quad$ (spherical)

Use the worksheet associated with Problem 2.8.1 in "Visual Electromagnetics for
Mathcad" to check your answer. (You may have to use a specific number instead of the variablea).
c. Calculate $\nabla \times \nabla$ f for each of the functions above.

