Surface integrals and divergence

Reading assignment

Popović and Popović, Appendix 1 Connor and Salon, II-26 \rightarrow II-34

Software

div_curl_example.m

Problem 1 - Surface integrals

Calculate $\int A \cdot ds$ for each of the following cases.

a. $\mathbf{A} = 3 \mathbf{a}_r$, surface is r = 3, $0 \le \phi \le \pi/3$, $-2 \le z \le 2$.

b. $\mathbf{A} = 2r \ \mathbf{a}_r + 6r \ \mathbf{a}_{\theta}$, surface is $0 \le r \le 5$, $\theta = \pi/3$, $0 \le \phi \le 2\pi$.

Problem 2 - Divergence

Calculate $\nabla \cdot \mathbf{A}$ for each of the vectors below.

a. $\mathbf{A} = x^2 y \, \mathbf{a}_x + c^2 x \, \mathbf{a}_z$

b. $\mathbf{A} = c/r^2 \mathbf{a}_r + e^{-j\beta r} \sin\theta/r \mathbf{a}_{\phi}$

c and β are constants. Use the worksheet associated with Problem 2.10.4 in "Visual Electromagnetics for Mathcad" to check your answer. (You may have to use specific numbers instead of the variables c and β .

Problem 3 - Divergence theorem

Show that the divergence theorem is valid by calculating $\int (\nabla \cdot \mathbf{A}) dv$ and

 $\int {\bf A} \cdot {\bf ds}$ for the vector ${\bf A}$ of Problem 2a. The volume integral should be for a cube with sides of length 1 as shown below.

