Reading assignment

Popović and Popović, 19.5

Problem 1 - Wave parameters

Run lesson1_5.m using Matlab. If the file isn't on your computer, copy it from the server to your $c: \backslash$ Field+Wave directory. The program plots $\cos (\omega t-\beta z)$ at fixed z on the top and fixed t on the bottom. Vary the values for ω and β.
a. What does ω represent? (Use the graph at fixed z. Express in terms of the wave period).
b. What does β represent? (Use the graph at fixed t . Express in terms of the wavelength, λ).
c. What is the velocity of the wave? (Express in terms of ω and β).

Problem 2-Phasors

a. Convert the following from time domain form to phasor form.

$$
\begin{aligned}
& V=2 \cos (4 t+2) \\
& I=8 \sin (3 t) \\
& V=2 \cos (4 t-6 z+2) \\
& \mathbf{H}=5 \cos (7 t-z+0.3) \mathbf{a}_{\mathbf{y}} .
\end{aligned}
$$

b. Convert the following from phasor form to time domain form. Assume the frequency is 3 Hz .
$\widehat{v}=3.3 \exp (\mathrm{j} 5)$
I $=4 \exp (j(5-3 z))$
$\mathbf{E}=6.9 \exp (-j 0.3 z) \mathbf{a}_{x}$.

