### Reading assignment

Popović and Popović, Chapter 5 Connor and Salon, I-24  $\rightarrow$  I-29 and II-1  $\rightarrow$  II-10

#### Problem 1 - Coulomb and Gauss' law

Show that the electric field of a point charge satisfies Gauss' law by evaluating  $\oint \mathbf{E} \cdot \mathbf{ds}$  over the surface of a sphere of radius a.

### **Problem 2 - Symmetry**

Three charge distributions are pictured below. In 1) and 3), assume that the system is very long and ignore fringe effects. For each of the charge distributions, answer the following:

- a. Determine the direction in which **E** points.
- b. Determine surfaces over which  $\int \mathbf{E} \cdot d\mathbf{s}$  is constant and non-zero.
- c. Sketch a surface that can be used with Gauss' law to find **E**.



## Problem 3 - Use Gauss' law to evaluate E

A charge distribution with *cylindrical* symmetry is shown below. The inner cylinder has a uniform charge density  $\rho_v$  C/m³. The outer shell has a surface charge density  $\rho_s$  C/m² such that the total charge on the outer shell is the negative of the total charge in the inner cylinder. Ignore end effects.

- a. Find **E** for r < a.
- b. Find **E** for a < r < b and for b < r.
- c. Check your answer for  $\mathbf{E}$  by evaluating  $\nabla \bullet \mathbf{E}$  and  $\nabla \times \mathbf{E}$ .
- d. What is  $\oint \mathbf{E} \cdot d\mathbf{l}$  around the contour shown on the right?

# Gauss' law

Express  $\rho_s$  in terms of the geometry and  $\rho_v$ . e.



