Reading assignment

Popović and Popović, Chapter 22.1, 22.2, 22.3
Connor and Salon, Unit X (On Waves \& Materials)
Problem 1-Normal incidence reflection - conductors
A 10 GHz plane wave has an electric field magnitude of $100 \mathrm{~V} / \mathrm{m}$ and propagates in the \mathbf{a}_{z} direction through a perfect dielectric with $\varepsilon_{r}=9 . \mathbf{E}$ is in the \mathbf{a}_{x} direction.
a. What are the incident \mathbf{E} and \mathbf{H} phasors?
b. At $z=0$, the wave strikes a perfect conductor. What are the reflected \mathbf{E} and \mathbf{H} phasors?
c. Use the boundary conditions to find the surface current density in the conductor.
d. Draw the standing wave pattern for \mathbf{E} and \mathbf{H} (include numbers for amplitude and position).
e. Simulate this case with sing_bnd.m by using a large imaginary dielectric for region 2.
f. Calculate the total E and H. (phasor \& time domain form).

Problem 2-Normal incidence reflection - dielectrics
The same wave as in problem 1 strikes a dielectric-air boundary at $z=0$ as shown below.

a. Find the reflection and transmission coefficients.
b. What are the reflected and transmitted electric field phasors?
c. What are the reflected and transmitted H phasors? What is $\mathrm{H}_{\mathrm{t}} / \mathrm{H}_{\mathrm{i}}$?
d. What is the standing wave ratio in the dielectric? Sketch the standing wave pattern for \mathbf{E} and \mathbf{H}. Run sing_bnd.m for this problem.
e. What is the average power density of the incident, reflected, and transmitted waves?

Problem 3-Normal incidence - multiple boundaries

A 10 GHz radar transmitter is used in the configuration shown below. N ote that the radome-outside air boundary is identical to the boundary examined in Problem 2.

a. What is | $\mathbf{E}|/|\mathbf{H}|$ at the $\mathbf{z = 0}$ boundary of Problem 2? (equivalent to the region 2-3 boundary in this problem). Compare it with the value in air.
b. Now refer to the full radome problem. Where can you put the left boundary so that | $\mathbf{E}|/|\mathbf{H}|$ in the radome matches that in the air on the left? For mechanical reasons, the radome must be more than 2 cm thick.
c. What is Γ for this value of d ?
d. What is Γ if d is 0.2 mm thinner than designed?

