Reading assignment

Popović and Popović, Chapters 22.4, 22.5, 22.6
Connor and Salon, Unit X (On Waves \& Materials)

Problem 1-oblique incidence

A plane wave described by $E_{i}=100 \cos (\omega t-\pi x-1.73 \pi z) a_{y} V / m$ is incident upon a dielectric material with $\varepsilon_{r}=4$.
a. Write \mathbf{E} in phasor form.
b. What are γ_{i} and θ_{i} ?
c. What are θ_{t} and γ_{t} ?
d. What are the reflection and transmission coefficients?
e. Write the total electric field phasors in both regions.
f. Confirm your results by running polariz.m

Problem 2-Snell's law, critical angle

For visible light, the index of refraction for water is $\mathrm{n}=1.33$. If we put a light source 1 meter under water and observe it from above the surface of the water, what is the largest θ_{i} for which light will be transmitted?
How large will the circle of illumination be?

Problem 3-polarization

Consider the same material properties and incident angle as Problem 1, but assume the opposite polarization.
a. What are the reflection and transmission coefficients?

Which polarization has a lower reflection coefficient (magnitude) ?
b. Now allow θ_{i} to vary. At what value of θ_{i} is the wave completely transmitted? (i.e. What's the Brewster angle?)

